Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Genet Epidemiol ; 46(3-4): 159-169, 2022 04.
Article in English | MEDLINE | ID: covidwho-1699896

ABSTRACT

Mendelian randomization (MR) is a statistical method exploiting genetic variants as instrumental variables to estimate the causal effect of modifiable risk factors on an outcome of interest. Despite wide uses of various popular two-sample MR methods based on genome-wide association study summary level data, however, those methods could suffer from potential power loss or/and biased inference when the chosen genetic variants are in linkage disequilibrium (LD), and also have relatively large direct effects on the outcome whose distribution might be heavy-tailed which is commonly referred to as the idiosyncratic pleiotropy phenomenon. To resolve those two issues, we propose a novel Robust Bayesian Mendelian Randomization (RBMR) model that uses the more robust multivariate generalized t$t$ -distribution to model such direct effects in a probabilistic model framework which can also incorporate the LD structure explicitly. The generalized t$t$ -distribution can be represented as a Gaussian scaled mixture so that our model parameters can be estimated by the expectation maximization (EM)-type algorithms. We compute the standard errors by calibrating the evidence lower bound using the likelihood ratio test. Through extensive simulation studies, we show that our RBMR has robust performance compared with other competing methods. We further apply our RBMR method to two benchmark data sets and find that RBMR has smaller bias and standard errors. Using our proposed RBMR method, we find that coronary artery disease is associated with increased risk of critically ill coronavirus disease 2019. We also develop a user-friendly R package RBMR (https://github.com/AnqiWang2021/RBMR) for public use.


Subject(s)
COVID-19 , Mendelian Randomization Analysis , Bayes Theorem , COVID-19/genetics , Genetic Pleiotropy , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mendelian Randomization Analysis/methods , Models, Genetic
2.
Sci Rep ; 12(1): 1891, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671627

ABSTRACT

The COVID-19 pandemic has produced broad clinical manifestations, from asymptomatic infection to hospitalization and death. Despite progress from genomic and clinical epidemiology research, risk factors for developing severe COVID-19 are incompletely understood and identification of modifiable risk factors is desperately needed. We conducted linkage disequilibrium score regression (LDSR) analysis to estimate cross-trait genetic correlation between COVID-19 severity and various polygenic phenotypes. To attenuate the genetic contribution of smoking and BMI, we further conducted sensitivity analyses by pruning genomic regions associated with smoking/BMI and repeating LDSR analyses. We identified robust positive associations between the genetic architecture of severe COVID-19 and both BMI and smoking. We observed strong positive genetic correlation (rg) with diabetes (rg = 0.25) and shortness of breath walking on level ground (rg = 0.28) and novel protective associations with vitamin E (rg = - 0.53), calcium (rg = - 0.33), retinol (rg = - 0.59), Apolipoprotein A (rg = - 0.13), and HDL (rg = - 0.17), but no association with vitamin D (rg = - 0.02). Removing genomic regions associated with smoking and BMI generally attenuated the associations, but the associations with nutrient biomarkers persisted. This study provides a comprehensive assessment of the shared genetic architecture of COVID-19 severity and numerous clinical/physiologic parameters. Associations with blood and plasma-derived traits identified biomarkers for Mendelian randomization studies to explore causality and nominates therapeutic targets for clinical evaluation.


Subject(s)
COVID-19/genetics , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Body Mass Index , COVID-19/etiology , Diabetes Mellitus/genetics , Dyspnea/genetics , Female , Humans , Male , Mendelian Randomization Analysis , Multifactorial Inheritance , Nutrients , Patient Acuity , Phenotype , Regression Analysis , Risk Factors , Smoking/genetics
3.
Nat Genet ; 54(2): 125-127, 2022 02.
Article in English | MEDLINE | ID: covidwho-1625297

ABSTRACT

The OAS1/2/3 cluster has been identified as a risk locus for severe COVID-19 among individuals of European ancestry, with a protective haplotype of approximately 75 kilobases (kb) derived from Neanderthals in the chromosomal region 12q24.13. This haplotype contains a splice variant of OAS1, which occurs in people of African ancestry independently of gene flow from Neanderthals. Using trans-ancestry fine-mapping approaches in 20,779 hospitalized cases, we demonstrate that this splice variant is likely to be the SNP responsible for the association at this locus, thus strongly implicating OAS1 as an effector gene influencing COVID-19 severity.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , COVID-19/genetics , COVID-19/pathology , Genetic Predisposition to Disease , Physical Chromosome Mapping , RNA Splicing/genetics , Severity of Illness Index , Black People/genetics , COVID-19/enzymology , Humans , Linkage Disequilibrium/genetics , Risk Factors , White People/genetics
4.
Infect Genet Evol ; 98: 105206, 2022 03.
Article in English | MEDLINE | ID: covidwho-1596757

ABSTRACT

SARS-CoV-2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the disparity in disease susceptibility between populations. Therefore, in the present study, we have used next-generation sequencing (NGS) data of world populations from 393 individuals and analyzed the TMPRSS2 gene using a haplotype-based approach with a major focus on South Asia to study its phylogenetic structure and their haplotype sharing among various populations worldwide. Our analysis of phylogenetic relatedness showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on the ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. Considering the significance of the TMPRSS2 gene in the SARS-CoV-2 pathogenicity, COVID-19 infection and intensity trends could be directly associated with increased expression therefore, we have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate (CFR). Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the CFR among Indian populations. Further our cis eQTL analysis of rs2070788 shows that the GG genotype of the rs2070788 tends to have a significantly higher expression of TMPRSS2 gene in the lung compared to the AG and AA genotypes thus validating the previous observation and therefore it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in understanding the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.


Subject(s)
COVID-19/genetics , COVID-19/mortality , Genetic Predisposition to Disease , Polymorphism, Genetic , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , White People/genetics , Humans , India/epidemiology , Linkage Disequilibrium , Pandemics , Phylogeny
5.
Brief Bioinform ; 22(2): 1442-1450, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343666

ABSTRACT

Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the COVID-19 pandemic has spread rapidly worldwide. Due to the limited virus strains, few key mutations that would be very important with the evolutionary trends of virus genome were observed in early studies. Here, we downloaded 1809 sequence data of SARS-CoV-2 strains from GISAID before April 2020 to identify mutations and functional alterations caused by these mutations. Totally, we identified 1017 nonsynonymous and 512 synonymous mutations with alignment to reference genome NC_045512, none of which were observed in the receptor-binding domain (RBD) of the spike protein. On average, each of the strains could have about 1.75 new mutations each month. The current mutations may have few impacts on antibodies. Although it shows the purifying selection in whole-genome, ORF3a, ORF8 and ORF10 were under positive selection. Only 36 mutations occurred in 1% and more virus strains were further analyzed to reveal linkage disequilibrium (LD) variants and dominant mutations. As a result, we observed five dominant mutations involving three nonsynonymous mutations C28144T, C14408T and A23403G and two synonymous mutations T8782C, and C3037T. These five mutations occurred in almost all strains in April 2020. Besides, we also observed two potential dominant nonsynonymous mutations C1059T and G25563T, which occurred in most of the strains in April 2020. Further functional analysis shows that these mutations decreased protein stability largely, which could lead to a significant reduction of virus virulence. In addition, the A23403G mutation increases the spike-ACE2 interaction and finally leads to the enhancement of its infectivity. All of these proved that the evolution of SARS-CoV-2 is toward the enhancement of infectivity and reduction of virulence.


Subject(s)
Biological Evolution , Mutation , SARS-CoV-2/genetics , COVID-19/virology , Humans , Linkage Disequilibrium , Open Reading Frames , SARS-CoV-2/pathogenicity , Virulence/genetics
6.
PLoS One ; 16(5): e0251368, 2021.
Article in English | MEDLINE | ID: covidwho-1242246

ABSTRACT

COVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains' recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified, whereas samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. In addition, we structurally modelled the two most common mutations, Spike_D614G and Nsp12_P314L, which suggested that these linked mutations may enhance viral entry and replication, respectively. Overall, we propose that genomic recombination between different strains may contribute to SARS-CoV-2 virulence and COVID-19 severity and may present additional challenges for current treatment regimens and countermeasures. Furthermore, our study provides a possible explanation for the substantial second wave of COVID-19 presented with higher infection and death rates in many countries.


Subject(s)
Recombination, Genetic , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Virulence/physiology , COVID-19/pathology , COVID-19/virology , Databases, Genetic , Genetic Variation , Haplotypes , Humans , Linkage Disequilibrium , Molecular Dynamics Simulation , Mutation, Missense , Principal Component Analysis , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
7.
Genome Med ; 13(1): 83, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232437

ABSTRACT

BACKGROUND: While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS: Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS: Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .


Subject(s)
COVID-19/genetics , Databases, Nucleic Acid , Genetic Predisposition to Disease , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Genome-Wide Association Study , Humans
8.
BMC Med Genomics ; 14(1): 38, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1063194

ABSTRACT

BACKGROUND: Lifestyle factors including obesity and smoking are suggested to be correlated with increased risk of COVID-19 severe illness or related death. However, whether these relationships are causal is not well known; neither for the relationships between COVID-19 severe illness and other common lifestyle factors, such as physical activity and alcohol consumption. METHODS: Genome-wide significant genetic variants associated with body mass index (BMI), lifetime smoking, physical activity and alcohol consumption identified by large-scale genome-wide association studies (GWAS) of up to 941,280 individuals were selected as instrumental variables. Summary statistics of the genetic variants on severe illness of COVID-19 were obtained from GWAS analyses of up to 6492 cases and 1,012,809 controls. Two-sample Mendelian randomisation analyses were conducted. RESULTS: Both per-standard deviation (SD) increase in genetically predicted BMI and lifetime smoking were associated with about two-fold increased risks of severe respiratory COVID-19 and COVID-19 hospitalization (all P < 0.05). Per-SD increase in genetically predicted physical activity was associated with decreased risks of severe respiratory COVID-19 (odds ratio [OR] = 0.19; 95% confidence interval [CI], 0.05, 0.74; P = 0.02), but not with COVID-19 hospitalization (OR = 0.44; 95% CI 0.18, 1.07; P = 0.07). No evidence of association was found for genetically predicted alcohol consumption. Similar results were found across robust Mendelian randomisation methods. CONCLUSIONS: Evidence is found that BMI and smoking causally increase and physical activity might causally decrease the risk of COVID-19 severe illness. This study highlights the importance of maintaining a healthy lifestyle in protecting from COVID-19 severe illness and its public health value in fighting against COVID-19 pandemic.


Subject(s)
COVID-19/diagnosis , Life Style , Mendelian Randomization Analysis/methods , Alcohol Drinking , Body Mass Index , COVID-19/genetics , COVID-19/virology , Exercise , Genetic Variation , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Odds Ratio , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Smoking
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1242-1249, 2021.
Article in English | MEDLINE | ID: covidwho-1054479

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic continues to spread rapidly around the world and nearly 20 millions people are infected. This paper utilises both single-locus analysis and joint-SNPs analysis for detection of significant single nucleotide polymorphisms (SNPs) in the phenotypes of symptomatic versus asymptomatic, the early collection time versus the late collection time, the old versus the young, and the male versus the female. Also, this paper analyses the relationship between any two SNPs via linkage disequilibrium analysis, and visualises the patterns of cumulative mutations of SNPs over collection time. The results are in three folds. First, the SNP which locates at the nucleotide position 4321 is found to be an independent significant locus associated with all the first three phenotypes. Moreover, 12 significant SNPs are found in the first two studies. Second, gene orf1ab containing SNP-4321 is detected to be significantly associated with the first three phenotypes, and the three genes S, ORF3a, and N, are detected to be significant in the first two phenotypes. Third, some of the detected genes or SNPs are related to the SARS-COV-2 as supported by literature survey, which indicates that the results here may be helpful for further investigation.


Subject(s)
COVID-19/virology , Genome, Viral , Mutation , SARS-CoV-2/genetics , COVID-19/epidemiology , Computational Biology , Databases, Genetic , Female , Genome-Wide Association Study , Humans , Japan/epidemiology , Linkage Disequilibrium , Male , Middle Aged , Pandemics , Phenotype , Polymorphism, Single Nucleotide , Whole Genome Sequencing
10.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1054296

ABSTRACT

The novel coronavirus (SARS-CoV-2) has become a pandemic and is threatening human health globally. Here, we report nine newly evolved SARS-CoV-2 single nucleotide polymorphism (SNP) alleles those underwent a rapid increase (seven cases) or decrease (two cases) in their frequency for 30-80% in the initial four months, which are further confirmed by intrahost single nucleotide variation analysis using raw sequence data including 8,217 samples. The nine SNPs are mostly (8/9) located in the coding region and are mainly (6/9) nonsynonymous substitutions. The nine SNPs show a complete linkage in SNP pairs and belong to three different linkage groups, named LG_1 to LG_3. Analyses in population genetics show signatures of adaptive selection toward the mutants in LG_1, but no signal of selection for LG_2. Population genetic analysis results on LG_3 show geological differentiation. Analyses on geographic COVID-19 cases and published clinical data provide evidence that the mutants in LG_1 and LG_3 benefit virus replication and those in LG_1 have a positive correlation with the disease severity in COVID-19-infected patients. The mutants in LG_2 show a bias toward mildness of the disease based on available public clinical data. Our findings may be instructive for epidemiological surveys and disease control of COVID-19 in the future.


Subject(s)
Alleles , COVID-19/virology , Mutation , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , COVID-19/epidemiology , Gene Frequency , Genes, Viral , Humans , Linkage Disequilibrium
11.
Am J Hum Genet ; 108(1): 194-201, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-971875

ABSTRACT

Given the coronavirus disease 2019 (COVID-19) pandemic, investigations into host susceptibility to infectious diseases and downstream sequelae have never been more relevant. Pneumonia is a lung disease that can cause respiratory failure and hypoxia and is a common complication of infectious diseases, including COVID-19. Few genome-wide association studies (GWASs) of host susceptibility and severity of pneumonia have been conducted. We performed GWASs of pneumonia susceptibility and severity in the Vanderbilt University biobank (BioVU) with linked electronic health records (EHRs), including Illumina Expanded Multi-Ethnic Global Array (MEGAEX)-genotyped European ancestry (EA, n= 69,819) and African ancestry (AA, n = 15,603) individuals. Two regions of large effect were identified: the CFTR locus in EA (rs113827944; OR = 1.84, p value = 1.2 × 10-36) and HBB in AA (rs334 [p.Glu7Val]; OR = 1.63, p value = 3.5 × 10-13). Mutations in these genes cause cystic fibrosis (CF) and sickle cell disease (SCD), respectively. After removing individuals diagnosed with CF and SCD, we assessed heterozygosity effects at our lead variants. Further GWASs after removing individuals with CF uncovered an additional association in R3HCC1L (rs10786398; OR = 1.22, p value = 3.5 × 10-8), which was replicated in two independent datasets: UK Biobank (n = 459,741) and 7,985 non-overlapping BioVU subjects, who are genotyped on arrays other than MEGAEX. This variant was also validated in GWASs of COVID-19 hospitalization and lung function. Our results highlight the importance of the host genome in infectious disease susceptibility and severity and offer crucial insight into genetic effects that could potentially influence severity of COVID-19 sequelae.


Subject(s)
COVID-19/complications , COVID-19/genetics , Host-Pathogen Interactions/genetics , Pneumonia, Viral/complications , Pneumonia, Viral/genetics , Bronchitis/genetics , COVID-19/pathology , COVID-19/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Databases, Genetic , Electronic Health Records , Female , Genome-Wide Association Study , Genotype , Hemoglobins/genetics , Humans , Inpatients , Linkage Disequilibrium , Male , Outpatients , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Pulmonary Disease, Chronic Obstructive/genetics , Reproducibility of Results , United Kingdom
12.
PLoS One ; 15(11): e0241535, 2020.
Article in English | MEDLINE | ID: covidwho-914232

ABSTRACT

The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral genome is an RNA virus consisting of approximately 30,000 bases. As part of testing efforts, whole genome sequencing of human isolates has resulted in over 1,600 complete genomes publicly available from GenBank. We have performed a comparative analysis of the sequences, in order to detect common mutations within the population. Analysis of variants occurring within the assembled genomes yields 417 variants occurring in at least 1% of the completed genomes, including 229 within the 5' untranslated region (UTR), 152 within the 3'UTR, 2 within intergenic regions and 34 within coding sequences.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , Mutation , 3' Untranslated Regions , 5' Untranslated Regions , Genetic Linkage , Linkage Disequilibrium , Lod Score , SARS-CoV-2 , Sequence Analysis, RNA , Whole Genome Sequencing
13.
Nature ; 587(7835): 610-612, 2020 11.
Article in English | MEDLINE | ID: covidwho-808357

ABSTRACT

A recent genetic association study1 identified a gene cluster on chromosome 3 as a risk locus for respiratory failure after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A separate study (COVID-19 Host Genetics Initiative)2 comprising 3,199 hospitalized patients with coronavirus disease 2019 (COVID-19) and control individuals showed that this cluster is the major genetic risk factor for severe symptoms after SARS-CoV-2 infection and hospitalization. Here we show that the risk is conferred by a genomic segment of around 50 kilobases in size that is inherited from Neanderthals and is carried by around 50% of people in south Asia and around 16% of people in Europe.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Genetic Predisposition to Disease , Neanderthals/genetics , Animals , Asia/ethnology , COVID-19/complications , Case-Control Studies , Chromosomes, Human, Pair 3/genetics , Europe/ethnology , Genetic Variation/genetics , Genome-Wide Association Study , Haplotypes/genetics , Hospitalization , Humans , Linkage Disequilibrium/genetics , Multigene Family/genetics , Phylogeny , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/physiopathology
15.
PLoS One ; 15(9): e0238255, 2020.
Article in English | MEDLINE | ID: covidwho-771804

ABSTRACT

It was shown that the human Angiotensin-converting enzyme 2 (ACE2) is the receptor of recent coronavirus SARS-CoV-2, and variation in this gene may affect the susceptibility of a population. Therefore, we have analysed the sequence data of ACE2 among 393 samples worldwide, focusing on South Asia. Genetically, South Asians are more related to West Eurasian populations rather than to East Eurasians. In the present analyses of ACE2, we observed that the majority of South Asian haplotypes are closer to East Eurasians rather than to West Eurasians. The phylogenetic analysis suggested that the South Asian haplotypes shared with East Eurasians involved two unique event polymorphisms (rs4646120 and rs2285666). In contrast with the European/American populations, both of the SNPs have largely similar frequencies for East Eurasians and South Asians, Therefore, it is likely that among the South Asians, host susceptibility to the novel coronavirus SARS-CoV-2 will be more similar to that of East Eurasians rather than to that of Europeans.


Subject(s)
Asian People/genetics , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Polymorphism, Single Nucleotide , Receptors, Virus/genetics , Angiotensin-Converting Enzyme 2 , Asia/epidemiology , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/ethnology , Haplotypes/genetics , Human Migration , Humans , Linkage Disequilibrium , Pandemics , Phylogeny , Pneumonia, Viral/ethnology , SARS-CoV-2 , White People/genetics
16.
Life Sci ; 260: 118313, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-725734

ABSTRACT

BACKGROUND: The prevalence and mortality of the outbreak of the COVID-19 pandemic show marked geographic variation. The presence of several subtypes of the coronavirus and the genetic differences in the populations could condition that variation. Thus, the objective of this study was to propose variants in genes that encode proteins related to the SARS-CoV-2 entry into the host cells as possible targets for genetic associations studies. METHODS: The allelic frequencies of the polymorphisms in the ACE2, TMPRSS2, TMPRSS11A, cathepsin L (CTSL), and elastase (ELANE) genes were obtained in four populations from the American, African, European, and Asian continents reported in the 1000 Genome Project. Moreover, we evaluated the potential biological effect of these variants using different web-based tools. RESULTS: In the coding sequences of these genes, we detected one probably-damaging polymorphism located in the TMPRSS2 gene (rs12329760) that produces a change of amino acid. Furthermore, forty-eight polymorphisms with possible functional consequences were detected in the non-coding sequences of the following genes: three in ACE2, seventeen in TMPRSS2, ten in TMPRSS11A, twelve in ELANE, and six in CTSL. These polymorphisms produce binding sites for transcription factors and microRNAs. The minor allele frequencies of these polymorphisms vary in each community; indeed, some of them are high in specific populations. CONCLUSION: In summary, using data of the 1000 Genome Project and web-based tools, we propose some polymorphisms, which, depending on the population, could be used for genetic association studies.


Subject(s)
Betacoronavirus , Cathepsin L/genetics , Coronavirus Infections/genetics , Leukocyte Elastase/genetics , Membrane Proteins/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Polymorphism, Genetic , Serine Endopeptidases/genetics , Serine Proteases/genetics , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gene Frequency , Genetic Association Studies , Humans , Linkage Disequilibrium , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL